翻訳と辞書
Words near each other
・ Calabash Music
・ Calabash Nebula
・ Calabash, North Carolina
・ Calabash, U.S. Virgin Islands
・ Calabasse River
・ Calabaza
・ Calabazas Creek (Santa Clara County)
・ Calabazas Creek (Sonoma County)
・ Calabazas de Fuentidueña
・ Calabazo virus
・ Calabi
・ Calabi conjecture
・ Calabi flow
・ Calabi triangle
・ Calabi-Yau (play)
Calabi–Eckmann manifold
・ Calabi–Yau algebra
・ Calabi–Yau manifold
・ Calabogie Lake
・ Calabogie Motorsports Park
・ Calabogie Peaks
・ Calaboose (film)
・ Calabor
・ Calabouço
・ Calabouço River
・ Calabouço, Mozambique
・ Calabozo
・ Calabozo Airport
・ Calabozoidae
・ Calabozos


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Calabi–Eckmann manifold : ウィキペディア英語版
Calabi–Eckmann manifold
In complex geometry, a part of mathematics, a Calabi–Eckmann manifold (or, often, Calabi–Eckmann space), named after Eugenio Calabi and Beno Eckmann, is a complex, homogeneous, non-Kähler manifold, homeomorphic to a product of two odd-dimensional spheres of dimension ≥ 3.
The Calabi–Eckmann manifold is constructed as follows. Consider the space ^n\backslash 0 \times ^m\backslash 0, ''m,n'' > 1, equipped with an action of a group :
: t\in , \ (x,y)\in ^n\backslash 0 \times ^m\backslash 0\ \ |\ \ t(x,y)= (e^tx, e^y)
where \alpha\in \backslash is a fixed complex number. It is easy to check that this action is free and proper, and the corresponding orbit space ''M'' is homeomorphic to ''S''2''n''−1 × ''S''2''m''−1. Since ''M'' is a quotient space of a holomorphic action, it is also a complex manifold. It is obviously homogeneous, with a transitive holomorphic action of GL(n,) \times GL(m, )
A Calabi–Eckmann manifold ''M'' is non-Kähler, because H^2(M)=0. It is the simplest example of a non-Kähler
manifold which is simply connected (in dimension 2, all simply connected compact complex manifolds are Kähler).
The natural projection
: ^n\backslash 0 \times ^m\backslash 0\mapsto P^\times P^
induces a holomorphic map from the corresponding Calabi–Eckmann manifold ''M'' to P^\times P^. The fiber of this map is an elliptic curve ''T'', obtained as a quotient of \Bbb C by the lattice + \alpha\cdot . This makes ''M'' into a principal ''T''-bundle.
Calabi and Eckmann discovered these manifolds in 1953.〔E. Calabi and B. Eckmann: A class of compact complex manifolds which are not algebraic. Annals of Mathematics, 58, 494–500 (1953)〕
==Notes==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Calabi–Eckmann manifold」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.